Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
NPJ Syst Biol Appl ; 10(1): 8, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242871

RESUMO

The efficiency of analyzing high-throughput data in systems biology has been demonstrated in numerous studies, where molecular data, such as transcriptomics and proteomics, offers great opportunities for understanding the complexity of biological processes. One important aspect of data analysis in systems biology is the shift from a reductionist approach that focuses on individual components to a more integrative perspective that considers the system as a whole, where the emphasis shifted from differential expression of individual genes to determining the activity of gene sets. Here, we present the rROMA software package for fast and accurate computation of the activity of gene sets with coordinated expression. The rROMA package incorporates significant improvements in the calculation algorithm, along with the implementation of several functions for statistical analysis and visualizing results. These additions greatly expand the package's capabilities and offer valuable tools for data analysis and interpretation. It is an open-source package available on github at: www.github.com/sysbio-curie/rROMA . Based on publicly available transcriptomic datasets, we applied rROMA to cystic fibrosis, highlighting biological mechanisms potentially involved in the establishment and progression of the disease and the associated genes. Results indicate that rROMA can detect disease-related active signaling pathways using transcriptomic and proteomic data. The results notably identified a significant mechanism relevant to cystic fibrosis, raised awareness of a possible bias related to cell culture, and uncovered an intriguing gene that warrants further investigation.


Assuntos
Fibrose Cística , Proteômica , Humanos , Proteômica/métodos , Perfilação da Expressão Gênica/métodos , Transcriptoma/genética , Biologia de Sistemas/métodos
2.
Cancers (Basel) ; 15(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37835564

RESUMO

A wide panel of microtubule-associated proteins and kinases is involved in coordinated regulation of the microtubule cytoskeleton and may thus represent valuable molecular markers contributing to major cellular pathways deregulated in cancer. We previously identified a panel of 17 microtubule-related (MT-Rel) genes that are differentially expressed in breast tumors showing resistance to taxane-based chemotherapy. In the present study, we evaluated the expression, prognostic value and functional impact of these genes in breast cancer. We show that 14 MT-Rel genes (KIF4A, ASPM, KIF20A, KIF14, TPX2, KIF18B, KIFC1, AURKB, KIF2C, GTSE1, KIF15, KIF11, RACGAP1, STMN1) are up-regulated in breast tumors compared with adjacent normal tissue. Six of them (KIF4A, ASPM, KIF20A, KIF14, TPX2, KIF18B) are overexpressed by more than 10-fold in tumor samples and four of them (KIF11, AURKB, TPX2 and KIFC1) are essential for cell survival. Overexpression of all 14 genes, and underexpression of 3 other MT-Rel genes (MAST4, MAPT and MTUS1) are associated with poor breast cancer patient survival. A Systems Biology approach highlighted three major functional networks connecting the 17 MT-Rel genes and their partners, which are centered on spindle assembly, chromosome segregation and cytokinesis. Our studies identified mitotic Aurora kinases and their substrates as major targets for therapeutic approaches against breast cancer.

3.
Mol Inform ; 42(4): e2200216, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36633361

RESUMO

Identification of novel chemotypes with biological activity similar to a known active molecule is an important challenge in drug discovery called 'scaffold hopping'. Small-, medium-, and large-step scaffold hopping efforts may lead to increasing degrees of chemical structure novelty with respect to the parent compound. In the present paper, we focus on the problem of large-step scaffold hopping. We assembled a high quality and well characterized dataset of scaffold hopping examples comprising pairs of active molecules and including a variety of protein targets. This dataset was used to build a benchmark corresponding to the setting of real-life applications: one active molecule is known, and the second active is searched among a set of decoys chosen in a way to avoid statistical bias. This allowed us to evaluate the performance of computational methods for solving large-step scaffold hopping problems. In particular, we assessed how difficult these problems are, particularly for classical 2D and 3D ligand-based methods. We also showed that a machine-learning chemogenomic algorithm outperforms classical methods and we provided some useful hints for future improvements.


Assuntos
Benchmarking , Descoberta de Drogas , Descoberta de Drogas/métodos , Ligantes , Algoritmos , Aprendizado de Máquina
4.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012204

RESUMO

Proteins interacting with CFTR and its mutants have been intensively studied using different experimental approaches. These studies provided information on the cellular processes leading to proper protein folding, routing to the plasma membrane, recycling, activation and degradation. Recently, new approaches have been developed based on the proximity labeling of protein partners or proteins in close vicinity and their subsequent identification by mass spectrometry. In this study, we evaluated TurboID- and APEX2-based proximity labeling of WT CFTR and compared the obtained data to those reported in databases. The CFTR-WT interactome was then compared to that of two CFTR (G551D and W1282X) mutants and the structurally unrelated potassium channel KCNK3. The two proximity labeling approaches identified both known and additional CFTR protein partners, including multiple SLC transporters. Proximity labeling approaches provided a more comprehensive picture of the CFTR interactome and improved our knowledge of the CFTR environment.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Dobramento de Proteína , Membrana Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Espectrometria de Massas , Mutação
5.
Pediatr Pulmonol ; 57(12): 2992-2999, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35996214

RESUMO

INTRODUCTION: Clinical trials for CFTR modulators consider mean changes of clinical status at the cohort level, and thus fail to assess the heterogeneity of the response. We aimed to study the different response profiles to lumacaftor-ivacaftor according to age in children with cystic fibrosis (CF). METHODS: A mathematical framework, including principal component analysis, data clustering, and data completion, was applied to a multicenter cohort of 112 children aged 6-18 years, treated with lumacaftor-ivacaftor. Studied parameters at baseline and 6 months included body mass index (BMI), number of days of antibiotics (ATB), Sweat test (ST), forced expiratory volume in 1 s expressed in percentage predicted (ppFEV1 ), forced vital capacity (ppFVC), and forced expiratory flow at 25%-75% of FVC (ppFEF25-75 ). RESULTS: Change in ppFEV1 was the most significant parameter in characterizing response heterogeneity among the 12-18-year-old patients. Patients with minimal changes in ppFEV1 were further separated by change in BMI and ATB course. In the 6-12-year-old children both BMI and ppFEV1 evolution were the most relevant. ST change was not associated with a clinical response. CONCLUSIONS: Change in ppFEV1 , BMI, and ATB course are the most relevant outcomes to discriminate clinical response profiles in children treated with lumacaftor-ivacaftor. Prepubertal and pubertal children display different response profiles.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Criança , Humanos , Adolescente , Regulador de Condutância Transmembrana em Fibrose Cística/uso terapêutico , Aminofenóis/uso terapêutico , Aminofenóis/farmacologia , Benzodioxóis/uso terapêutico , Benzodioxóis/farmacologia , Aminopiridinas/uso terapêutico , Aminopiridinas/farmacologia , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/complicações , Volume Expiratório Forçado , Combinação de Medicamentos , Antibacterianos/uso terapêutico , Fibrose , Mutação
6.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066072

RESUMO

Identification of the protein targets of hit molecules is essential in the drug discovery process. Target prediction with machine learning algorithms can help accelerate this search, limiting the number of required experiments. However, Drug-Target Interactions databases used for training present high statistical bias, leading to a high number of false positives, thus increasing time and cost of experimental validation campaigns. To minimize the number of false positives among predicted targets, we propose a new scheme for choosing negative examples, so that each protein and each drug appears an equal number of times in positive and negative examples. We artificially reproduce the process of target identification for three specific drugs, and more globally for 200 approved drugs. For the detailed three drug examples, and for the larger set of 200 drugs, training with the proposed scheme for the choice of negative examples improved target prediction results: the average number of false positives among the top ranked predicted targets decreased, and overall, the rank of the true targets was improved.Our method corrects databases' statistical bias and reduces the number of false positive predictions, and therefore the number of useless experiments potentially undertaken.


Assuntos
Biologia Computacional/métodos , Descoberta de Drogas/métodos , Aprendizado de Máquina , Preparações Farmacêuticas/química , Proteínas/química , Software , Humanos , Preparações Farmacêuticas/metabolismo , Mapeamento de Interação de Proteínas , Proteínas/metabolismo , Máquina de Vetores de Suporte
7.
Int J Mol Sci ; 21(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927759

RESUMO

Background: The prevalence of chronic kidney disease is increased in patients with cystic fibrosis (CF). The study of urinary exosomal proteins might provide insight into the pathophysiology of CF kidney disease. Methods: Urine samples were collected from 19 CF patients (among those 7 were treated by cystic fibrosis transmembrane conductance regulator (CFTR) modulators), and 8 healthy subjects. Urine exosomal protein content was determined by high resolution mass spectrometry. Results: A heatmap of the differentially expressed proteins in urinary exosomes showed a clear separation between control and CF patients. Seventeen proteins were upregulated in CF patients (including epidermal growth factor receptor (EGFR); proteasome subunit beta type-6, transglutaminases, caspase 14) and 118 were downregulated (including glutathione S-transferases, superoxide dismutase, klotho, endosomal sorting complex required for transport, and matrisome proteins). Gene set enrichment analysis revealed 20 gene sets upregulated and 74 downregulated. Treatment with CFTR modulators yielded no significant modification of the proteomic content. These results highlight that CF kidney cells adapt to the CFTR defect by upregulating proteasome activity and that autophagy and endosomal targeting are impaired. Increased expression of EGFR and decreased expression of klotho and matrisome might play a central role in this CF kidney signature by inducing oxidation, inflammation, accelerated senescence, and abnormal tissue repair. Conclusions: Our study unravels novel insights into consequences of CFTR dysfunction in the urinary tract, some of which may have clinical and therapeutic implications.


Assuntos
Fibrose Cística/urina , Exossomos/metabolismo , Nefropatias/urina , Adolescente , Adulto , Aminofenóis/uso terapêutico , Aminopiridinas/uso terapêutico , Benzodioxóis/uso terapêutico , Estudos de Casos e Controles , Criança , Pré-Escolar , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Combinação de Medicamentos , Humanos , Indóis/uso terapêutico , Nefropatias/etiologia , Proteoma , Quinolonas/uso terapêutico , Adulto Jovem
8.
J Cheminform ; 12(1): 11, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33431042

RESUMO

Chemogenomics, also called proteochemometrics, covers a range of computational methods that can be used to predict protein-ligand interactions at large scales in the protein and chemical spaces. They differ from more classical ligand-based methods (also called QSAR) that predict ligands for a given protein receptor. In the context of drug discovery process, chemogenomics allows to tackle the question of predicting off-target proteins for drug candidates, one of the main causes of undesirable side-effects and failure within drugs development processes. The present study compares shallow and deep machine-learning approaches for chemogenomics, and explores data augmentation techniques for deep learning algorithms in chemogenomics. Shallow machine-learning algorithms rely on expert-based chemical and protein descriptors, while recent developments in deep learning algorithms enable to learn abstract numerical representations of molecular graphs and protein sequences, in order to optimise the performance of the prediction task. We first propose a formulation of chemogenomics with deep learning, called the chemogenomic neural network (CN), as a feed-forward neural network taking as input the combination of molecule and protein representations learnt by molecular graph and protein sequence encoders. We show that, on large datasets, the deep learning CN model outperforms state-of-the-art shallow methods, and competes with deep methods with expert-based descriptors. However, on small datasets, shallow methods present better prediction performance than deep learning methods. Then, we evaluate data augmentation techniques, namely multi-view and transfer learning, to improve the prediction performance of the chemogenomic neural network. We conclude that a promising research direction is to integrate heterogeneous sources of data such as auxiliary tasks for which large datasets are available, or independently, multiple molecule and protein attribute views.

9.
PLoS Comput Biol ; 15(9): e1007381, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31568528

RESUMO

Cancer driver genes, i.e., oncogenes and tumor suppressor genes, are involved in the acquisition of important functions in tumors, providing a selective growth advantage, allowing uncontrolled proliferation and avoiding apoptosis. It is therefore important to identify these driver genes, both for the fundamental understanding of cancer and to help finding new therapeutic targets or biomarkers. Although the most frequently mutated driver genes have been identified, it is believed that many more remain to be discovered, particularly for driver genes specific to some cancer types. In this paper, we propose a new computational method called LOTUS to predict new driver genes. LOTUS is a machine-learning based approach which allows to integrate various types of data in a versatile manner, including information about gene mutations and protein-protein interactions. In addition, LOTUS can predict cancer driver genes in a pan-cancer setting as well as for specific cancer types, using a multitask learning strategy to share information across cancer types. We empirically show that LOTUS outperforms five other state-of-the-art driver gene prediction methods, both in terms of intrinsic consistency and prediction accuracy, and provide predictions of new cancer genes across many cancer types.


Assuntos
Algoritmos , Biologia Computacional/métodos , Aprendizado de Máquina , Neoplasias/genética , Oncogenes/genética , Software , Humanos , Modelos Estatísticos
10.
PLoS One ; 13(10): e0204999, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30286165

RESUMO

Adverse drug reactions, also called side effects, range from mild to fatal clinical events and significantly affect the quality of care. Among other causes, side effects occur when drugs bind to proteins other than their intended target. As experimentally testing drug specificity against the entire proteome is out of reach, we investigate the application of chemogenomics approaches. We formulate the study of drug specificity as a problem of predicting interactions between drugs and proteins at the proteome scale. We build several benchmark datasets, and propose NN-MT, a multi-task Support Vector Machine (SVM) algorithm that is trained on a limited number of data points, in order to solve the computational issues or proteome-wide SVM for chemogenomics. We compare NN-MT to different state-of-the-art methods, and show that its prediction performances are similar or better, at an efficient calculation cost. Compared to its competitors, the proposed method is particularly efficient to predict (protein, ligand) interactions in the difficult double-orphan case, i.e. when no interactions are previously known for the protein nor for the ligand. The NN-MT algorithm appears to be a good default method providing state-of-the-art or better performances, in a wide range of prediction scenario that are considered in the present study: proteome-wide prediction, protein family prediction, test (protein, ligand) pairs dissimilar to pairs in the train set, and orphan cases.


Assuntos
Genômica , Preparações Farmacêuticas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Preparações Farmacêuticas/metabolismo , Prognóstico , Máquina de Vetores de Suporte
11.
Bioorg Med Chem ; 26(20): 5510-5530, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30309671

RESUMO

The TAM kinase family arises as a new effective and attractive therapeutic target for cancer therapy, autoimmune and viral diseases. A series of 2,6-disubstituted imidazo[4,5-b]pyridines were designed, synthesized and identified as highly potent TAM inhibitors. Despite remarkable structural similarities within the TAM family, compounds 28 and 25 demonstrated high activity and selectivity in vitro against AXL and MER, with IC50 value of 0.77 nM and 9 nM respectively and a 120- to 900-fold selectivity. We also observed an unexpected nuclear localization for compound 10Bb, thanks to nanoSIMS technology, which could be correlated to the absence of cytotoxicity on three different cancer cell lines being sensitive to TAM inhibition.


Assuntos
Imidazóis/química , Imidazóis/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Piridinas/química , Piridinas/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , c-Mer Tirosina Quinase/antagonistas & inibidores , Células A549 , Desenho de Fármacos , Humanos , Imidazóis/síntese química , Imidazóis/farmacocinética , Modelos Moleculares , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas/metabolismo , Piridinas/síntese química , Piridinas/farmacocinética , Receptores Proteína Tirosina Quinases/metabolismo , Relação Estrutura-Atividade , c-Mer Tirosina Quinase/metabolismo , Receptor Tirosina Quinase Axl
12.
Mol Inform ; 36(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28949440

RESUMO

The development of high-throughput in vitro assays to study quantitatively the toxicity of chemical compounds on genetically characterized human-derived cell lines paves the way to predictive toxicogenetics, where one would be able to predict the toxicity of any particular compound on any particular individual. In this paper we present a machine learning-based approach for that purpose, kernel multitask regression (KMR), which combines chemical characterizations of molecular compounds with genetic and transcriptomic characterizations of cell lines to predict the toxicity of a given compound on a given cell line. We demonstrate the relevance of the method on the recent DREAM8 Toxicogenetics challenge, where it ranked among the best state-of-the-art models, and discuss the importance of choosing good descriptors for cell lines and chemicals.


Assuntos
Toxicogenética/métodos , Algoritmos , Animais , Humanos , Aprendizado de Máquina , Análise de Regressão , Testes de Toxicidade
13.
Pac Symp Biocomput ; 21: 261-72, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26776192

RESUMO

Machine learning applications in precision medicine are severely limited by the scarcity of data to learn from. Indeed, training data often contains many more features than samples. To alleviate the resulting statistical issues, the multitask learning framework proposes to learn different but related tasks jointly, rather than independently, by sharing information between these tasks. Within this framework, the joint regularization of model parameters results in models with few non-zero coefficients and that share similar sparsity patterns. We propose a new regularized multitask approach that incorporates task descriptors, hence modulating the amount of information shared between tasks according to their similarity. We show on simulated data that this method outperforms other multitask feature selection approaches, particularly in the case of scarce data. In addition, we demonstrate on peptide MHC-I binding data the ability of the proposed approach to make predictions for new tasks for which no training data is available.


Assuntos
Biologia Computacional/métodos , Algoritmos , Simulação por Computador , Interpretação Estatística de Dados , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Análise dos Mínimos Quadrados , Aprendizado de Máquina/estatística & dados numéricos , Modelos Estatísticos , Peptídeos/metabolismo , Medicina de Precisão/estatística & dados numéricos , Ligação Proteica , Curva ROC
14.
PLoS One ; 9(8): e103986, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25098247

RESUMO

INTRODUCTION: Epigenetic modifications such as aberrant DNA methylation has long been associated with tumorogenesis. Little is known, however, about how these modifications appear in cancer progression. Comparing the methylome of breast carcinomas and locoregional evolutions could shed light on this process. METHODS: The methylome profiles of 48 primary breast carcinomas (PT) and their matched axillary metastases (PT/AM pairs, 20 cases), local recurrences (PT/LR pairs, 17 cases) or contralateral breast carcinomas (PT/CL pairs, 11 cases) were analyzed. Univariate and multivariate analyzes were performed to determine differentially methylated probes (DMPs), and a similarity score was defined to compare methylation profiles. Correlation with copy-number based score was calculated and metastatic-free survival was compared between methods. RESULTS: 49 DMPs were found for the PT/AM set, but none for the others (FDR < 5%). Hierarchical clustering clustered 75% of the PT/AM, 47% of the PT/LR, and none of the PT/CL pairs together. A methylation-based score (MS) was defined as a clonality measure. The PT/AM set contained a high proportion of clonal pairs while PT/LR pairs were evenly split between high and low MS score, suggesting two groups: true recurrences (TR) and new primary tumors (NP). CL were classified as new tumors. MS score was significantly correlated with copy-number based scores. There was no significant difference between the metastatic-free survival of groups of patients based on different classifications. CONCLUSION: Epigenomic alterations are well suited to study clonality and track cancer progression. Methylation-based classification of TR and NP performed as well as clinical and copy-number based methods suggesting that these phenomenons are tightly linked.


Assuntos
Neoplasias da Mama , Metilação de DNA , DNA de Neoplasias , Epigênese Genética , Recidiva Local de Neoplasia , Adulto , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Intervalo Livre de Doença , Epigenômica , Feminino , Humanos , Pessoa de Meia-Idade , Metástase Neoplásica , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/mortalidade , Recidiva Local de Neoplasia/patologia , Taxa de Sobrevida
15.
Eur J Med Chem ; 70: 789-801, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24239626

RESUMO

In this study, we describe the synthesis of new pyrimidine analogs of BMS-777607, a potent and selective inhibitor of Met kinase. Inhibition of Met and Axl remained high whereas inhibition of Tyro3 and Mer decreased to some extend. The preferential moderate inhibition of the non-phosphorylated form of Abl1 of some derivatives suggests that they behave as type II inhibitors. This hypothesis was confirmed by docking studies into the structure of Met (3F82) and in a Tyro3 model where key interactions with the hinge region, the DFG-out motif and the allosteric pocket explain this inhibition.


Assuntos
Aminopiridinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Piridonas/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Aminopiridinas/síntese química , Aminopiridinas/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-met/metabolismo , Piridonas/síntese química , Piridonas/química , Receptores Proteína Tirosina Quinases/metabolismo , Relação Estrutura-Atividade
16.
J Biol Chem ; 288(25): 18561-73, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23653352

RESUMO

Widespread drug resistance calls for the urgent development of new antimalarials that target novel steps in the life cycle of Plasmodium falciparum and Plasmodium vivax. The essential subtilisin-like serine protease SUB1 of Plasmodium merozoites plays a dual role in egress from and invasion into host erythrocytes. It belongs to a new generation of attractive drug targets against which specific potent inhibitors are actively searched. We characterize here the P. vivax SUB1 enzyme and show that it displays a typical auto-processing pattern and apical localization in P. vivax merozoites. To search for small PvSUB1 inhibitors, we took advantage of the similarity of SUB1 with bacterial subtilisins and generated P. vivax SUB1 three-dimensional models. The structure-based virtual screening of a large commercial chemical compounds library identified 306 virtual best hits, of which 37 were experimentally confirmed inhibitors and 5 had Ki values of <50 µM for PvSUB1. Interestingly, they belong to different chemical families. The most promising competitive inhibitor of PvSUB1 (compound 2) was equally active on PfSUB1 and displayed anti-P. falciparum and Plasmodium berghei activity in vitro and in vivo, respectively. Compound 2 inhibited the endogenous PfSUB1 as illustrated by the inhibited maturation of its natural substrate PfSERA5 and inhibited parasite egress and subsequent erythrocyte invasion. These data indicate that the strategy of in silico screening of three-dimensional models to select for virtual inhibitors combined with stringent biological validation successfully identified several inhibitors of the PvSUB1 enzyme. The most promising hit proved to be a potent cross-inhibitor of PlasmodiumSUB1, laying the groundwork for the development of a globally active small compound antimalarial.


Assuntos
Plasmodium vivax/enzimologia , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Serina Proteases/química , Sequência de Aminoácidos , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Sítios de Ligação/genética , Biocatálise/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Feminino , Cinética , Malária/parasitologia , Malária/prevenção & controle , Merozoítos/efeitos dos fármacos , Merozoítos/enzimologia , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/enzimologia , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Homologia de Sequência de Aminoácidos , Serina Proteases/genética , Serina Proteases/metabolismo , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia , Células Sf9 , Especificidade por Substrato
17.
Eur J Med Chem ; 61: 2-25, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22749189

RESUMO

The TAM subfamily of Receptor Tyrosine Kinases (RTKs) contains three human proteins of therapeutical interest, Axl, Mer, and Tyro3. Our goal was to design a type II inhibitor specific for this family, i.e. able to interact with the allosteric pocket and with the hinge region of the kinase. We report the synthesis of several series of purine analogues of BMS-777607. The structural diversity of the designed inhibitors was expected to modify the interactions formed in the binding site and consequently to modulate their selectivity profiles. The most potent inhibitor 6g exhibits Kds of 39, 42, 65 and 200 nM against Axl, Mer, Met and Tyro3 respectively. Analysis of the affinity of 6g for active and inactive forms of Abl1, an RTK protein that does not belong to the TAM subfamily, together with the binding modes of 6g predicted by docking studies, indicates that 6g displays some selectivity for the TAM family and may act as a type II inhibitor.


Assuntos
Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Animais , Células Cultivadas , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Receptores Proteína Tirosina Quinases/metabolismo , Relação Estrutura-Atividade , Células Vero
18.
Bioinformatics ; 28(18): i487-i494, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22962471

RESUMO

MOTIVATION: Drug effects are mainly caused by the interactions between drug molecules and their target proteins including primary targets and off-targets. Identification of the molecular mechanisms behind overall drug-target interactions is crucial in the drug design process. RESULTS: We develop a classifier-based approach to identify chemogenomic features (the underlying associations between drug chemical substructures and protein domains) that are involved in drug-target interaction networks. We propose a novel algorithm for extracting informative chemogenomic features by using L(1) regularized classifiers over the tensor product space of possible drug-target pairs. It is shown that the proposed method can extract a very limited number of chemogenomic features without loosing the performance of predicting drug-target interactions and the extracted features are biologically meaningful. The extracted substructure-domain association network enables us to suggest ligand chemical fragments specific for each protein domain and ligand core substructures important for a wide range of protein families. AVAILABILITY: Softwares are available at the supplemental website. CONTACT: yamanishi@bioreg.kyushu-u.ac.jp SUPPLEMENTARY INFORMATION: Datasets and all results are available at http://cbio.ensmp.fr/~yyamanishi/l1binary/ .


Assuntos
Algoritmos , Desenho de Fármacos , Preparações Farmacêuticas/química , Estrutura Terciária de Proteína , Sistemas de Liberação de Medicamentos , Humanos , Ligantes , Modelos Lineares , Proteínas/química , Proteínas/classificação , Proteínas/metabolismo
19.
Bioinformatics ; 28(18): i522-i528, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22962476

RESUMO

MOTIVATION: Identifying the emergence and underlying mechanisms of drug side effects is a challenging task in the drug development process. This underscores the importance of system-wide approaches for linking different scales of drug actions; namely drug-protein interactions (molecular scale) and side effects (phenotypic scale) toward side effect prediction for uncharacterized drugs. RESULTS: We performed a large-scale analysis to extract correlated sets of targeted proteins and side effects, based on the co-occurrence of drugs in protein-binding profiles and side effect profiles, using sparse canonical correlation analysis. The analysis of 658 drugs with the two profiles for 1368 proteins and 1339 side effects led to the extraction of 80 correlated sets. Enrichment analyses using KEGG and Gene Ontology showed that most of the correlated sets were significantly enriched with proteins that are involved in the same biological pathways, even if their molecular functions are different. This allowed for a biologically relevant interpretation regarding the relationship between drug-targeted proteins and side effects. The extracted side effects can be regarded as possible phenotypic outcomes by drugs targeting the proteins that appear in the same correlated set. The proposed method is expected to be useful for predicting potential side effects of new drug candidate compounds based on their protein-binding profiles. SUPPLEMENTARY INFORMATION: Datasets and all results are available at http://web.kuicr.kyoto-u.ac.jp/supp/smizutan/target-effect/. AVAILABILITY: Software is available at the above supplementary website. CONTACT: yamanishi@bioreg.kyushu-u.ac.jp, or goto@kuicr.kyoto-u.ac.jp.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Modelos Estatísticos , Preparações Farmacêuticas/química , Proteínas/efeitos dos fármacos , Preparações Farmacêuticas/metabolismo , Fenótipo , Proteínas/metabolismo
20.
PLoS One ; 7(8): e42715, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22927936

RESUMO

High Content Screening (HCS) platforms allow screening living cells under a wide range of experimental conditions and give access to a whole panel of cellular responses to a specific treatment. The outcome is a series of cell population images. Within these images, the heterogeneity of cellular response to the same treatment leads to a whole range of observed values for the recorded cellular features. Consequently, it is difficult to compare and interpret experiments. Moreover, the definition of phenotypic classes at a cell population level remains an open question, although this would ease experiments analyses. In the present work, we tackle these two questions. The input of the method is a series of cell population images for which segmentation and cellular phenotype classification has already been performed. We propose a probabilistic model to represent and later compare cell populations. The model is able to fully exploit the HCS-specific information: "dependence structure of population descriptors" and "within-population variability". The experiments we carried out illustrate how our model accounts for this specific information, as well as the fact that the model benefits from considering them. We underline that these features allow richer HCS data analysis than simpler methods based on single cellular feature values averaged over each well. We validate an HCS data analysis method based on control experiments. It accounts for HCS specificities that were not taken into account by previous methods but have a sound biological meaning. Biological validation of previously unknown outputs of the method constitutes a future line of work.


Assuntos
Separação Celular/métodos , Modelos Estatísticos , Fenótipo , Linhagem Celular Tumoral , Sobrevivência Celular , Inativação Gênica , Humanos , Imagem Molecular , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...